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The problem of launching a rocket into the Earth’s orbit has already been solved using the regularization method in 
previous studies. But the regularization method remains relevant for application to solving integral equations of the 
first kind, which determine the components of speed and acceleration. The problem of optimal control of propellant 
consumption during the insertion of a rocket into a circle orbit of the Earth is solved using regularized solutions of 
integral equations of the first kind which are solutions of corresponding Euler equations on discrete-time net. The 
influence of the regularization parameter and some additional parameters on precision of discredited problem is in-
vestigated. Calculations are carried out for existing chemical rocket engine and promising plasmic one. Considered 
algorithm is summed up easily to problem of suborbital flights by setting desired coordinate system and modifying 
motion equations. Conclusions were drawn about the required speed for the lowest fuel consumption, as well as 
about the problem for a single-stage rocket. Thus, the development of a plasma rocket engine with an exhaust veloc-
ity is more than ten times higher than that of a chemical one.
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INTRODUCTION 

A problem of the trajectory optimization of a rocket or 
a spacecraft with a rocket engine belongs to a class of 
the dynamic systems optimization problems. Its solution 
leads to searching for the local or global extremum of 
a beforehand defined functional determined on the set 
of the solutions of the controlled dynamic system sat-
isfying some conditions [1-3]. As a rule, the conditions 
can be both internal and boundary to the control process. 
Thus, we consider a rocket or a spacecraft to be the con-
trolled dynamic system. Applying some restrictions to it 
we have some formulation of the optimization problem 
[4-6]. It is well known that its solution is found with the 
maximum principle by Pontryagin transferring the optimi-
zation problem to the boundary problem [7-9]. Besides, 
we have to determine explicitly the performance criteria 
and restrictions [1, 4, 10]. 
There are two models of rocket engine performance [11-
13]. The first of them matches the non-controlled engine 
when the reactive force and the relative velocity of ex-
haust gazes are considered to be constant [14-16]. The 
engine just can be turned on or off. That is the most real-
istic model. The second of them matches the ideal limited 
power engine when the power of the engine is constant 
[17]. Under this restriction, we can vary the reactive force 
and the exhaust velocity [14]. In this work, we vary both 
the reactive force and the power of the rocket engine by 
varying the consumption of propellant and keeping the 
exhaust gases velocity. The optimal control problem is 
to find the trajectory corresponding to the minimal con-
sumption of propellant. 

A problem of insertion of a rocket into an orbit of the Earth 
at the height h1 with the first orbital velocity Υ1 during 
the time T1 supplying minimal propellant consumption is 
considered. A similar problem has been solved using the 
regularization method in [18-20]. In this work, the regu-
larization method is applied to solve integral equations of 
the first kind determining components of the velocity and 
the acceleration. If there are the horizontal component of 
the velocity υx(τ) and the vertical one υy(τ) then the set of 
the equation of motion of a body with the varying mass 
m(τ) in atmosphere is [18] (Eq. 1) with the initial condi-
tions (Eqs. 2-3). Where μ≤m(τ)≤m is the variable mass of 
a rocket with propellant, kg; μ is the mass of construction 
of a rocket, kg; υ(τ) is the velocity of a rocket; w(τ) is the 
control function equal to the consumption of propellant 
trough one second, kg/s; a=const=2500 m/s is the rela-
tive velocity of exhaust gases; 0≤c[h(τ)]≤0.2∙10−7kg/m is 
the generalized ballistic coefficient of air; g=9.81 m/s2 is 
the free-fall acceleration. 

(1)

(3)

(2)
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The optimal control function w˜(τ) must be positive at a 
time interval 0≤τ≤T1. Gradual decrease in the consump-
tion of the mass of propellant begins at the time instant 
τ=0 when the velocity is equal to Υ0. The optimal con-
trol function w˜(τ) and the time instant T1 when burning 
of propellant is stopped are desired while (Eq. 4) is the 
velocity of a rocket equal to the first orbit velocity Υ1 at 
the height h1 reached at the instant T1 (Eq. 5). Where  
G= 6.6743∙ 10−11m3s−2kg−1 is the gravitational constant; 
M=5.97∙1024kg is the mass of the Earth; R0= 6.371∙ 106m 
is the radius of the Earth [21-23]. 

If T1 is the time instant in which the velocity becomes 
equal to the first orbit one then the velocity of the lifting of 
a rocket depends on the height of circle orbit h1 accord-
ing to the integral equation of the first kind (Eq. 6) with 
the boundary conditions (Eqs. 7-8), while the horizontal 
component of the acceleration depends on the velocity 
of a rocket at the time instant when propellant burning 
is stopped according to the (Eq. 9) with the boundary 
conditions (Eqs. 10-11), where (Eq. 12) is the horizontal 
component of the acceleration of a rocket, m/s. 

From the set of (Eq. 13) the differential equation for the 
varying mass m(τ) is gotten which is connected with the 
velocity υ(τ) with the initial condition (Eq. 14). As far as 
(Eqs. 15-17) there is (Eq. 18). 

The consumption of propellant is found from the same 
set of equations as (Eq. 19). 

The procedure of searching for the optimal consumption 
of propellant using solutions of the integral equations of 
the first kind is the next. The consequence of couples 
of the numbers {h(n)

1,T
(n)

1} is set, and to each the height 
h(n)

1 there is the first space velocity Υ(n)
1. For each cou-

ple of the numbers using the regularization method, the 
integral equations of the first kind (Eq. 6) in the velocity 
υy(τ) and (Eq. 9) in the acceleration υ′x(τ) are solved. The 
acceleration (Eq. 20) can be calculated and the velocity 
υ′x(τ) from the ordinary differential equation (21) with the 
initial condition (Eq. 22) can be found [24-26]. 

Substituting the functions υx(τ), υ′x(τ), υy(τ), υ′y(τ) into the 
(Eq. 18) the mass m(τ) and the consumption w(τ) from 
the (Eq. 19) are found. Then from the sequence of cou-
ples of the numbers {h(n)

1,T
(n)

1} such a couple {h(m)
1,T

(m)
1} 

is found on which the propellant consumption (Eq. 19) 
reaches its minimum (Eq. 23): 

(4)

(5)

(12)

(11)

(10)

(9)

(8)

(7)

(6)

(18)

(17)

(15)

(16)

(14)

(13)

(19)

(22)

(21)

(20)

(23)

As a result, the functions w(m),h(m)
1,T

(m)
1 are gotten which 

are considered to be approximate regularized solution of 
the problem of optimal control. 

DETERMINATION OF VERTICAL COMPONENT OF 
THE VELOCITY AND THE ACCELERATION 

For each couple of the numbers {h(n)
1,T

(n)
1} the right-hand 

side of the (Eq. 6) is put approximately, and h(n)
1 ϵ [h(0)

1,h
(N)

1] 
where (Eq. 24). The integral equations (25-26) has the 
kernel K(h1,τ)=1 and the function (27): 

(24)

(25)

(26)

(27)
The required approximate (regularized) solution of the 
(Eq. 25), Aυy=uδ, is the function υy(τ) which is the solu-
tion of the integrodifferential equation (28) of Euler [18], 
where K(h1,τ)=1, (Eqs. 29-30): 

(28)
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And if F1 is a set of the functions υ(τ) continuous on 
the interval [0, T1] and having the first order derivatives  
dυ(τ)/dτ square integrable on [0, T1], then for the func-
tions υ(τ)ϵF1 the stabilizing functional is determined as 
[18] (Eq. 31) where q(τ), p(τ) are defined nonnegative 
functions such that for every τϵ[0, T1]. There are (Eq. 32) 
and p(τ)≥ p0> 0 where p0 is a number. One of these func-
tionals is chosen (Eq. 32). 

Minimizing the functional (Eq. 31) is a conditional ex-
tremum problem. It is solved by the method of undeter-
mined Lagrange multipliers; the function υy(τ) is found 
minimizing the smoothing functional (Eq. 33) where [18] 
(Eq. 34). 

This is an unconditional extremum problem, in which the 
regularization parameter is determined from the (Eq. 35) 
with the solution (Eq. 36) depending on the discrepancy 
δ. 

The parameter γ may be determined both by the dis-
crepandy (Eq. 35) and other ways [18, 27]. Consequent-
ly: 

This equation is solved with one of the boundary condi-
tions following from the equality to zero of the solution or 
its first derivative on the bounds of the interval [0, T1] [18] 
(Eqs. 38-41): 

As (Eqs. 7-8) there is a need not to pass on to a new func-
tion υ˜(τ) satisfying to the boundary conditions υ˜(0)=0, 
υ˜(T1)=0 [18]. Now (Eqs. 42-43) are put. Then (Eq. 44): 

A difference analogue of the (Eq. 44) is written down on 
a uniform net with the time increment ∆τ. The interval  
[0, T1] is divided into M equal parts and set the ends of 
got intervals as nodes of the net (Eqs. 45-46): 

Replacing the integral in the left-hand side of the (Eq. 
44) by the integral sum corresponding to it according
to the formula of rectangles, for example, and υ''y(τ) by 
corresponding difference expression, there is [18] (Eqs. 
47-48): 

The values of the right-hand side fi are calculated ana-
lytically. At the same time, the numbers N, M of the net 
points on the coordinates h1, τ are independent. If i=1, 
i=M then there undefined values (υy)0 and (υy)M+1 are in 
the set of linear algebraic equations (48) for the vector 
(49). To satisfy the boundary conditions (50), (51) are 
put. 

Thus, the problem of searching for approximate (regular-
ized) solution of the equation (26), (52), leads to solving 
the set of linear algebraic equations for the vector (53).

(29)

(30)

(31)

(32)

(33)

(34)

(36)

(35)

(37)

(40)

(39)

(41)

(38)

(44)

(42)
(43)

(45)

(46)

(47)

(48)

(50)

(49)

(51)

(53)

(52)
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DETERMINATION OF HORIZONTAL COMPONENT 
OF THE VELOCITY AND THE ACCELERATION 

For each couple {Υ(n)
1,T

(n)
1} the right-hand side of the (Eq. 

9) is known approximately, and Υ(n)
1ϵ[Υ(0)

1,Υ
(N)

1] where
(Eq. 24) [28, 29]. The integral equation (54) has the ker-
nel K(Υ1,τ)=1 and the function (55). 

The required approximate (regularized) solution of the 
(Eq. 54), Aυ′x=uδ, is the function υ′x(τ) which is the solu-
tion of the integro-differential equation (56) of Euler [18], 
where K(Υ1,τ)=1, (Eqs. 57-58). Consequently, (Eq. 59). 

As (Eqs. 10-11) there is a need not to pass on to a 
new function υ˜(τ) satistying to the boundary condi-
tionsυ˜(0)=0, υ˜(T1)=0 [18]. (Eq. 38-39) are put. Then: 

(54)

(55)

(56)

(57)

(58)

(59)

(60)

A difference analog of the (Eq. 60) is written down on a 
uniform grid with step ∆τ. The interval [0, T1] is divided 
into M equal parts and sets the ends of got intervals as 
nodes of the net (Eqs. 45-46). Replacing the integral in 
the left-hand side of the (Eq. 60) by the integral sum cor-
responding to it according to the formula of rectangles, 
for example, and [υ′x(τ)]'' by corresponding difference ex-
pression, there is [18]: 

(61)

(62)

The values of the right-hand side fi are calculated ana-
lytically. At the same time, the numbers N, M of the net 
points on the coordinates Υ1, τ are independent. If i=1, 
i=M then there undefined values (υ′x)0 and (υ′x)M+1 are in 
the set of linear algebraic equation (62) for the vector 
υ′x=((υ′x)1, (υ′x)2,…,(υ′x)M). To satisfy the boundary condi-
tions (Eqs. 63-64) are put. 

(63)

(64)

(66)

(65)

Thus, the problem of searching for approximate (regular-
ized) solution of the (Eq. 26), Aυ′x=uδ, leads to solving the 
set of linear algebraic equations for the vector (65). Then 
the vector (66) is found solving the ordinary differential 
equation (21). 

RESULTS OF CALCULATION 

The problem of injection into a circle orbit at the height 
h1=500 km during the time T1=600 s of a one-stage rock-
et with the total mass of its construction and payload 
μ=1000 kg, and the mass of propellant ∆m=1000 kg is 
considered. Consequently, the start mass of a rocket is 
equal to m0=2000 kg. The velocity υy(τ) is an approxi-
mate solution of the integral equation (6) which is found 
from the Euler equation (37) transformed into the set 
of linear algebraic equations (48). If the regularization 
parameter γ=const then the distribution of the velocity 
corresponds to the right-hand side uδ(h1)=h1 of the in-
tegral equation (26) within an accuracy of the solution 
of the set of algebraic equations (48). A solution (υy)
i(i=0,1,…,M) has the homogeneous boundary conditions  
(υy)0= υy(0)= 0;(υy)M=υy(T1)=0 with the values 
q(τ)=q=10−6m∙s; p(τ)=p=1m∙s3 (Fig. 1a). The acceleration 
υ′y(τ) is found by differentiating υy(τ) numerically (Fig. 1b): 

(69)

(68)

(67)
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Then the velocity (υy)M+1 necessary to solve numeri-
cally the ordinary differential equation (18) in the mass  
mi(i= 0,1,…,M) is: 

(a)

Figure 1: Distribution in the time of the properties of a 
chemical rocket (a=2.5 ∙103m/s) and a plasmic rocket 

(a=2.5 ∙104m/s) with the start mass m0=200 kg injected 
into a circle orbit of the Earth at the height h1=500 km 

and time T1=600 s: the velocity υ, m/s, (a); the  
acceleration υ′, m/s2, (b); the mass of a rocket m(m0(τ)) 
is the mass of a chemical rocket, m1(τ) is the mass of 
a plasmic rocket), kg, (c); the propellant consumption  

w(w0(τ)) is the consumption of a chemical rocket, w(τ) is 
the consumption of a plasmic rocket), kg/s, (d)

The acceleration υ′x(τ) is an approximate solution of 
the integral equation (9) which is found from the Eul-
er equation (59) transformed into the set of linear al-
gebraic equations (62). If the regularization parameter  
γ=const then the distribution of the velocity corresponds 
to the right-hand side uδ(Υ1)=(Υ1) of the integral equation 
(53) within an accuracy of the solution of the set of al-
gebraic equations (62). A solution (υ′x)i (i=0,1,…,M) has 
the homogeneous boundary conditions (υy)0=υy(0)=0,  
(υy)M=υy(T1)=0 with the values q(τ)=q=10−6m;  
p(τ)=p=1 m∙s2 (Fig. 1b). The velocity υx(τ) is found 
from the acceleration υ′x(τ) by solving numerical-
ly the ordinary differential equation (21) on the time 
net (υx)i (i=0,1,…,M) (Fig. 1a). Then the velocity  
(υx)M+1 necessary to solve numerically the ordinary dif-
ferential equation (18) in the mass mi(i=0,1,…,M) is:  

A one-stage chemical rocket with the velocity of exhaust 
gazes a=2.5 ∙103m/s is able to inject into a circle orbit 
just its own propellant with minimal mass of construction 
(Fig. 1c). Therefore, one uses multi-stage chemical rock-
ets. To analyze a one-stage rocket engine demonstra-
tive enough another kind of a rocket engine promising 
at the present is considered. There are projects of plas-
mic rocket engines with the velocity of exhaust gazes  
a=2.5 ∙104m/s reducing by 10 times the consumption 
of propellant w and keeping the reactive force aw. The 
consumption of propellant of one-stage plasmic engine 
injecting into a circle orbit at the height h1 during the time 
T1 a rocket with the start mass is analyzed (72) (Fig. 1d). 

The Euler equation for the integral equation (6) in 
the velocity υy(τ) corresponds to the right-hand part  
h(n)

1ϵ [h(0)
1,h

(N)
1] where h(0)

1=450∙103m (Υ1=7.643∙103m/s), 
h(N)

1=550∙103m (Υ1 =7.588∙103m/s). The first orbital ve-
locity Υ1 is the right-hand part of the equation (9) in 
the acceleration υ′x (τ). A consequence of the heights 
h(n)

1ϵ[h(0)
1,h

(N)
1] and a consequence of the times of in-

jection are set to find a couple {h(m)
1,T

(m)
1} supplying a 

minimal consumption of propellant (Eq. 19). The least 
propellant consumption 669.4 kg is for the couple  
{h1= 550 km, T1= 540 s} and the start mass of a rocket 
2000 kg (Table 1) as the first orbital velocity decreases 
when the height increases according to (5). 
To solve a problem of keeping predetermined distribution 
of the velocity υx(τ), υy(τ), and consequently the accel-
eration υ′x(τ), υ′y(τ), corresponding to the trajectory x(τ), 
y(τ), the regularization parameter γx(τ), from the (Eq. 62) 
and γy(τ), from the (Eq. 48) has to be found. The regu-
larization parameter is able to be found analytically by 
the method of simple iteration or the iteration-variation 

(d)

(c)

(b)

(70)

(71)

(72)
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method [30, 31]. In that case the right-hand side of the 
integral equation (6) in the form of the height of the orbit 
and the integral equation (9) in the form of the first orbital 
velocity Υ1 will deviate from the predetermined one. Sim-
ilar problems may be formulated and solved to transport 
a rocket with a payload into desired point. Polar of spher-
ical coordinate system can be also used. 

CONCLUSIONS 

The problem of insertion of a rocket into the desired 
orbit in the view of minimal consumption of propel-
lant leads to solving the set of two ordinary differential 
equations in the components of the velocity (when a 
movement is in the plane xy and two integral equations. 
Summarizing the differential equations, the ordinary dif-
ferential equation in the mass of a rocket from the time 
connecting it with the free-fall acceleration, the ballis-
tic coefficient of atmosphere depending on the height, 
the components of the velocity of exhaust gases, and a 
rocket are gotten. The integral equations follow from the 
laws of mechanics: υy(τ)=dh(τ)/dh,=>υy(τ)dτ=dh(τ), and  
υ′x(τ)=dυx(τ)/dτ,=>υ′x(τ)dτ=dvx(τ). The integral equations 
are solved using the regularization method and an Eu-
ler equation on a time net as the set of linear algebraic 
equations in the velocity υy(τ) or the acceleration υ′x(τ). 
In the right-hand side of the integral equation in the ver-
tical component of the velocity there is the height of an 
orbit. In the right-hand side of the integral equation in the 
horizontal component of the acceleration is the first orbit-
al velocity depending on the height of an orbit. Searching 
for the least consumption of propellant a sequence of 
couples of the numbers are set: the first one is the time 
of propellant burning, the second one is the height of an 
orbit with the first orbital velocity. The numbers must be-
long to admissible intervals of the flight time and the orbit 
height. For each of the couples corresponding integral 
equations are solved. From these equations the vertical 
component of the velocity determining the vertical accel-
eration, and the horizontal component of the accelera-

Table 1: The consumption of propellant of a plasmic 
rocket (a=2.5 ∙104m/s) equal to the difference of the  

masses m(0)−m(T1) for couples of the numbers {h1, T1} 
(the mass of an empty rocket μ=103kg, the mass of  

propellant ∆m=103kg) 

h1, km, T1, s 540 570 600 630 660

450 680.3 695.5 710.6 725.6 740.3

475 677.2 692.4 707.4 722.2 737.0

500 674.4 689.4 704.3 719.1 733.8

525 671.8 686.7 701.5 716.2 730.8

550 669.4 684.2 698.8 713.4 727.9

tion determining the horizontal velocity dependent on the 
time are found. 
The Euler equation for the integral equation in the ver-
tical component of the velocity includes the regulariza-
tion parameter γ=γ(τ)>0 and the functions q=q(τ)>0 m∙s; 
p=p(τ)>0 m∙s3. Keeping γ=const and changing the func-
tions q,p the velocity distribution in the time to the homo-
geneous boundary conditions is brought to supply the 
desired height of an orbit within an accuracy of solution 
of the Euler equation. The Euler equation for the integral 
equation in the horizontal component of the acceleration 
includes the regularization parameter γ=γ(τ)>0 and the 
functions q=q(τ)>0 m; p=p(τ)>0 m∙s2. Keeping γ=const 
and changing the functions q,p the acceleration distribu-
tion in the time to the homogeneous boundary conditions 
is brought to supply the first orbital velocity correspond-
ing to the desired height within an accuracy of solution of 
the Euler equation. 
The problem of insertion of a multy-stage rocket into de-
sired orbit in the view of minimal consumption of propel-
lant is analogous to the problem for a one-stage rock-
et. But a one-stage rocket injects just itself without any 
payload. Therefore, working out a plasmic rocket engine 
with the velocity of exhaust gases more tenfold than 
chemical one has is promising. Problems of suborbital 
and interplanetary flights can be solved using the pro-
cedure in the spherical or polar coordinate system. To-
day there are used low power ion-plasma rocket engines 
for suborbital flights. Manned flights are reasonable on 
the basis of high power plasmic rocket engines with the 
reactive force comparable to chemical ones. To search 
for a solution of the integral equations closed to known 
distributions of the velocity and acceleration in the time 
there is a need to find the regularization parameter in 
the time according to those functions. In that case the 
right-hand sides of the integral equations deviate from 
desired values. 
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